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The nonlinear equations describing convection in the form of thermal Rossby waves 
in a rotating annulus are solved both by an analytical perturbation theory and by 
a numerical method. It is shown that even in the absence of curvature of the surfaces 
bounding the fluid annulus in the axial direction a mean flow is generated by 
Reynolds stresses. The good agreement between analytical expressions and numerical 
results indicates that the former are valid over a larger domain of the parameter space 
than may be expected on the basis of the analysis of convection rolls in a non-rotating 
layer. This is caused in part by the reduced release of potential energy accompanying 
the reduced convective heat transport owing to the drift of the convection columns. 
The effect of curvature causes the replacement of the basic mode of convection by 
a different mode characterized by a double roll structure. The associated zonal mean 
flow is typically stronger than in the case without curvature. 

1. Introduction 
Convection driven by radial buoyancy in a rotating cylindrical annulus with 

conical end surfaces has long been recognized as a basic model for motions in stellar 
and planetary interiors. For a recent review see Busse (1982). But the problem is of 
more general interest to fluid dynamicists because of the time dependence of the 
convection columns and because of the generation of mean zonal flows by the 
fluctuating motions. Laboratory investigations of these phenomena are feasible since 
the centrifugal force can provide the appropriate buoyancy if the annular fluid region 
is heated from the outside and cooled from within (Busse & Carrigan 1974; Busse 
& Hood 1982; Azouni, Bolton & Busse 1986). The onset of convection, its time 
dependence, and the generation of zonal flows have been investigated in these 
laboratory studies. 

The theory of the convection columns or thermal Rossby waves as they are 
sometimes called has been restricted so far to perturbation expansions of the solution 
up to the second order in the amplitude of convection. In this paper extensions of the 
previous analysis are described. The perturbation analysis is carried to higher order 
with the result that mean flows are found even in the case of end surfaces without 
curvature. The extent of the validity of the analytical perturbation expressions can 
be tested by a numerical integration of the basic equations. A Galerkin technique is 
introduced for this purpose and the dependent variables are expanded in terms of 
complete systems of functions. The nonlinear algebraic equations for the coefficients 
are then solved by a Newton-Raphson method. The numerical results match those 
of the truncated perturbation expansion over a remarkably wide interval. A stability 
analysis can be added in the numerical scheme in order to determine the domains 
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of stability of the steadily drifting convection columns. These results and the 
properties of the solutions bifurcating at the stability boundary will be discussed in 
a second paper (Or & Busse 1986) which will be referred to as 11. 

The paper starts with the formulation of the mathematical problem in $2.  The 
perturbation analysis is described in $3 for the case without curvature. The 
corresponding numerical results are presented in $4. The analysis of the effect of 
curvature follows in $5.  The paper closes with a discussion of mean zonal flows 
generated by convection and potential applications to the dynamics of planetary 
atmospheres. 

2. Mathematical formulation 
We consider a fluid-filled cylindrical annulus which is rotating about its axis of 

symmetry with the angular velocity B as shown in figure 1. The inner and the outer 
cylindrical walls are kept at the constant temperatures TI and T,, respectively. Using 
the distance D between the walls as lengthscale, D*/v as timescale, where v is the 
kinematic viscosity, and P(T, - Tl) as scale for the temperature, the Naviedtokes 
equations of motion and the heat equation for the deviation 8 from the state of pure 
conduction can be written in the following form 

(2.1 a) 

v*u = 0 ,  (2.lb) 

(2.1 c )  

The unit vectors i and k point in the radial and axial directions, and the dimensionless 
parameters of the problem are defined by 

a 
at 
- v + v * V ~ + 2 E - ~ k x  v = -Vx-R8i+V2v,  

( E ~ + V * V ~ )  P = - i*v+v28.  

Prandtl number: P = Y / K ,  

Rayleigh number: 

Ekman number: E = v/D252, 
R = yDW2r,(T,- ~ ) / v K ,  

where K ,  y and ro denote the thermal diffusivity, the coefficient of thermal expansion, 
and the mean radius, respectively. We have neglected in equations (2.1) the variation 
of the centrifugal force and of the temperature gradient of the basic conductive state, 
since we shall introduce the small gap approximation, D/ro Q 1. In this cam a 
Cartesian system of coordinates can be introduced with the 2- and z-coordinates in 
the directions of i and k and the y-coordinate in the azimuthal direction. We have 
also neglected the effect of gravity. This can be justified in laboratory applications 
of the theory if the axis of rotation is vertical and if the centrifugal force is of the 
same order as, or larger than, gravity (Busse 1970). 

Among the boundary conditions the vanishing of the normal velocity component 
at the end surface is the most important one. Assuming symmetry with respect to 
the equatorial plane of the annulus and introducing the ratio 1 between axial length 
L and thickness D of the annulus we write this boundary condition in the form 

v*[k+ iqo( l  +ef(z))] = 0 at z = +$, (2.2) 

where qo is the average tangent of the angle between the conical end surfaces and 
the equatorial plane. For finite values 8,  the end surfaces exhibit curvature in the 



Convection in a rotating cylindrical annulus 

In 

175 

u 
FIQURE 1. Geometrical configuration of the rotating fluid annulus. 

radial direction, the dependence of which on x is described by the function f(x). We 
shall assume thatf(x) is an increasing function of x withf( -z) = -f(s). Assuming a 
positive qo we speak of the convex case for positive e; the concave case corresponds 
to  negative 6. 

At the cylindrical walls we require stress-free, isothermal boundaries, 

as 
axa 

v * i =  - v * i =  8 = 0 at x = ki. 

Since the azimuthal wavelength of convection columns is typically small compared 
to the radial width, the difference between no-slip and stress-free conditions affects 
only a small region near the walls. An asymptotic theory can be developed for the 
limit of small E to take into account this difference; but such a boundary-layer 
analysis will not be attempted here. The main advantage of the boundary condition 
(2.3) is the possibility of a periodic continuation of the annular layer. An arrangement 
of stacked annular layers has been introduced in a model of the dynamics of Jupiter’s 
atmosphere (Busse 1983a) and has been one of the motivations for the present 
analysis. 

Additional conditions at z = &+Z are irrelevant in the following analysis. In  
particular Ekman layers formed at the end surfaces are unimportant as long as 
7 . P  % a holds according to Busse (1970). Since we are interested in the limit of small 
E which is relevant to laboratory experiments as well as to planetary applications, 
this inequality can be satisfied easily even if we require 

70 4 1, (2.4) 

as we shall do in the following for reasons of mathematical convenience. For the 
analysis of the paper, insulating end surfaces provide the natural boundary condition 

(2.5) 
for 6, a 

- 8 = 0 at z = kit. a% 
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The limit (2.4) permits the assumption of nearly geostrophic solutions of (2.1), 
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v = V x k $ ( x , y , t ) + i i ,  (2.6) 

where d is a small perturbation of the order 7,. By taking the z-component of the 
curl of (2.1 a), averaging it over z, and using the boundary condition (2.2) we obtain 

a a -  
at a Y  
- A ,  $+ ij*VA, $-2.770[1 + € j ( ~ ) ]  (2E-'- A ,  $) i*vlZ+ I-' = R - 8+V2A, $, (2.7) 

where the bar indicates the average over z and the operator A ,  is defined by 

We have used the definition 
~ 

A,$ -k*W x V ,  

and have neglected the difference S'VA, $ -v*Vk .V  x v .  To first order in qo we can 
replace v in (2.7) by the first term expression (2.6) and neglect the term A ,  $i*vlz,:z 
in comparison with the three nonlinear terms of the equation. We thus obtain 

where q* is defined by 
q* = 4qo/lE. 

I n  accordance with the assumption of small qo the difference between 8 and 8 can 
be neglected and the heat equation (2.1 c) can be written 

(2.8b) 

Before solving the nonlinear problem posed by equations (2.8) we consider the linear 
limit. It is well known that solutions of the form 

$, = sinn(x+i) sin(ay+wt), (2.9) 

Pw, sin (ay + w t )  + (n2 + a,) cos (ay + wt)  
Poi + (n2 + a,), 

8, =-a sinn(x+i) , 

satisfy equations (2.8) and the boundary conditions (2.3) for E = 0 if the expressions 

are chosen for the frequency and for the Rayleigh number, respectively. I n  the limit 
of large q*, the value of a minimizing R, is given by 

and the minimum R, of R, can be expressed in the form 

( 2 . 1 1 ~ )  

(2.11 b) 

I n  the next section the solution (2.9) will be extended into the nonlinear regime. 
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3. Perturbation analysis 

(2.8) in terms of an expansion in powers of A,  
By introducing the amplitude A of convection as a small parameter we can solve 

I $ = A($,+A$,+A2$,+.. .) ,  

8 = A(8,+A8,+A28,+ ...), 

R = Ro+AR,+A2R,+ ..., 
w =o0+Aw,+A2w,+ .... 

Restricting the attention to the case of vanishing curvature E = 0, and starting with 
the solution (2.9), (2.10) in the lowest order, we obtain in the order A2 of (2.8), 

(3.2b) 

Since $ and 8 depend on y and t only through the combination ay + wt because of 
the wave character of the solution, we have replaced the time derivative by a 
y-derivative. 

In writing (3.2) we have also anticipated that the solvability conditions require 
R, = w, = 0 because of the antisymmetry with respect to x of the inhomogeneous 
terms. Since the right-hand side of ( 3 . 2 ~ )  vanishes and the right-hand side of (3.2b) 
is independent of y, the solution of equations (3.2) assumes the form 

el = 0,  8, = B, sin2x(x+;), (3.3) 

with B, = Pa2(x2+a2) [ 8 x ~ ~ P e + 8 x ( x ~ + a ~ ) ~ ] - ~ .  

As normalization condition we have imposed 

($,, sinn(x+i) exp{iay+iwt}) = $Yno (3.4) 

in order to eliminate phase shifts of the basic solution (2.9) introduced by higher-order 
terms. The angular brackets indicate the average over x- and y-coordinates. In  the 
order A3 of the problem, (2.8) assume the form 

To apply solvability conditions we must introduce the general solution 

$* = sinn(x+$) exp{iay+iwt}, 8* = ia~*[x2+az-iPw0]-', (3.6) 

of the adjoint linear homogeneous problem. 
By multiplying ( 3 . 5 ~ )  by $* and (3.5b) by ROO*, adding the equations and 

averaging them over the fluid layer we obtain a complex linear equation whose real 
and imaginary parts determine R, and w, with the result 

0, = 0, R, = R 0 h B , .  (3-7) 
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The solution of equations (3.5), satisfying conditions (2.3) and (3.4), is given by 
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@, = R,az((C, sin(ay+ot)+E, cos(ay+wt)) sin3n(x++), (3.8a) 

8, = a[((aiw,+ay*)&,+aiE,) sin(ay+wt)-(ai&z-(woai+av*)E2) cos(ay+wt)] 

where the definitions 
x sin 3n(z + i) - R, 8,/Ro, (3.8b) 

E ,  = PBln[(l +P)w,ai+aiv*a]E,, tZ = PB,x[R,a2-a~+Poo(a~wo+r]*a)]E, ,  

a; = 9z2 + a,, E, = {[Ro a2 + Pwo(ai oo + v*a) - a:], + [ (1 + P )  wo at +a; 7*aI2}-', 

have been used. 
A novel result is obtained in the next higher order of the equations. For reasons 

of symmetry w, and R, must vanish. But the solution for +, contains a mean 
component independent of y and t .  By taking the y-average over the original equation 
of motion, the equation for the mean zonal flow V, = -a$,/ax can be written 
in the form 

a a a  
- v 3 = - -  ax2 ax a -@,-+o+-+ ax ay ax oay -A) ,  
a 2  

(3.9) 

were the y-average has been indicated by a bar. (Since the z-dependence is no longer 
part of the problem, this bar should not be mistaken for the z-average used in $2.) 
Integration of (3.9) yields 

V, = 8, a3RO[cos 4 ~ (  x + g) - 4 cos 2 ~ (  x + f ) ] .  (3.10) 

This result demonstrates that a mean zonal flow with retrograde direction is 
generated in the interior of the annular layer for positive v*. In  contrast to the zonal 
flow generated by a finite curvature 8 (Busse & Hood 1982), it is symmetric about 
the midplane of the layer. The constant of integration has been chosen such that ( V,) 
vanishes. In  order to satisfy no-slip conditions required by rigid walls at z = &+, 
however, an appropriate constant can be added in expression (3.10). 

Another mean quantity interest is e, for which the equation 

(3.11) 

holds. The solution of this equation satisfying the boundary condition (2.3) is given 
by 

8, = {a4R0(n2 + a2) [Po: + (n2 + a,),] - 6, + az(a; - wo a: 8,)) 

(sin ~ R ( X  + t )  - f sin 4x(x + f) ) R,(n2 + a,) a2 sin 2n(x + t )  
X . (3.12) 4n + [Po: + (n2 + 4xR0 

A physical quantity of special interest is the convective heat transport. Usually 
it is described by the Nusselt number which is defined as the total heat transport 
across the layer in the presence of convection divided by the heat transport in the 
absence of convection, - 

Taking into account only the lowest-order term we find 

+ ... . 2(R - RO) 
RO 

N u - l =  

(3.13) 

(3.14) 
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This expression is the same as in the case of a non-rotating layer heated from below. 
The absence of any dependence on P and q* disappears, however, as higher-order 
terms are taken into account. Solution (3.12) indicates the complexity of higher-order 
terms that have been neglected in (3.14). The results of the numerical analysis 
discussed in the next section bear out this point. 

4. Numerical analysis 
The advantage of the perturbation analysis outlined in the preceding section lies 

in the derivation of expressions exhibiting an explicit dependence on the parameters 
q*, P, a of the problem. But because of the necessity of truncating the perturbation 
series and because of its finite radius of convergence the results are useful only within 
a limited range of B. The numerical solution of (2.8) yields complementary results. 
While only selected parameter values can be used in general, relatively high values 
of B are accessible and by comparison with the perturbation theory the range of 
validity of the analytical expressions can be assessed. 

In extension of earlier work on convection in a plane layer we use a Galerkin method 
for the numerical solution. By expanding the dependent variables + and 8 in terms 
of functions satisfying the boundary conditions (2.2), 

we obtain a system of nonlinear equations for the coefficients &km, dk , ,  bk,,, and bkm 

after (2.8) have been multiplied by the expansion functions and averaged over the 
fluid layer. In order to solve the system of nonlinear algebraic equations we have to 
introduce a truncation procedure. We do so by neglecting all equations and all 
coefficients with subscripts I ,  n satisfying 

l + n  > NT, (4.2) 

where NT is the truncation parameter. NT = 6 has been found to yield satisfactory 
results over nearly the entire range of Rayleigh numbers that has been investigated. 
Comparison with solutions for NT = 8 indicates that significant deviations appear 
only at the highest Rayleigh numbers studied. In fact, for much of the parameter 
domain shown in the following, solutions obtained with NT = 4 suffice. 

In this section only results for vanishing curvature of the end surfaces, e = 0, will 
be discussed. In this case a subclass of solutions of the form (4.1) has the property 
that all coefficients with odd 2 + n vanish. This subclass is of primary interest since 
it contains the solution corresponding to the minimum value of R for which the 
perturbation solution of $3  has been obtained. A comparison of numerical and 
analytical results is shown in figure 2. The straight lines indicate that the coefficients 
conform to the power-law dependence of the corresponding first terms of the 
perturbation series. Only when (R - R,)/R, reaches values of the order 1 do significant 
changes occur in the dependence of the coefficients on R. Most of these changes can 
be described as saturation effects in that the growth of the convection amplitude is 
weakened. This property is also evident in figure 3 where the Nusselt number is shown 
for different values of s* and P. The most noticeable saturation of the Nusselt number 
occurs for P = 1. The phase shift between 8, and +, is 0 and $a in the limits P+O 
and P-+ CQ , respectively, and thus the nonlinear interaction described by higher-order 
terms is strongest at some intermediate Prandtl number. 

At higher values of q* the remarkable phenomenon occurs that two solutions with 
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FIQURE 2. Comparison of numerical results with the analytical expressions (dashed lines) for P = 1, 
q* = 2800, E = 0, a = a, = 9.4. The critical value of R is R, = 30680. 
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FIWJF~E 3.The Nusselt number Nu aa a function of (R- R,)IR, for various values of P and v* .  In 
the limit R+R, the Nusselt number is independent of those two parameters according to (3.14). 
In the caae P = 1, v* = 2800 dashed curves obtained for lower values of the truncation parameter 
NT are shown for comparison. 
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the same symmetry properties can be obtained at the same value of B. As shown in 
figure 3 for q* = 4-  104 a lower branch bends away sharply, but smoothly, from the 
common line for low values of R-R,/R,, while a separate upper branch has been 
found at higher values of R-R,/R,.  When it was attempted to continue the upper 
branch towards lower values that solution jumped to the lower branch. The nearly 
kink-like bend of the lower branch does not indicate a bifurcation, as has become 
evident from the stability analysis of the solutions. The lower branch remains stable 
with respect to disturbances of the same symmetry up to R-  R, x 0.045 R,, while 
the upper branch is always unstable with respect to these disturbances. A more 
complete discussion of the stability properties of various solutions will be given 
in 11. 

5. The effect of finite curvature 
In  the case of finite E equations (2.8) do not permit simple solutions even in the 

linear limit of the problem. In  order to study the dependence of the critical Rayleigh 
number on E we thus shall employ a perturbation expansion in powers of E ,  

R = R ~ ) + E R ~ ) + E ~ R ~ ) +  ..., 
(5.1) 

(5.2) 

I w = W p + E W p ) + E 2 W p +  ..., 
?h = $p+E$p)+ ..., 

and use a particularly convenient form of the functionf(x), 

We have introduced the superscript n because we start with the general solution 

f(x) = -A -1  cos A(X + 4). 

(5.3) 

$in) = sinnz(x+i) exp{iay+iot], 

o p  = - aq*( 1 + P)-1 (nW + a%) -1, 

of the limit E = 0. In first order in E we obtain 

By combining ( 2 . 8 ~ ~ )  and (2 .8b)  we have eliminated the variable 8. The terms 
involving of") and R p )  have been neglected because the solvability condition for (5.4) 
requires win) = R p )  = 0.  The solution $!")satisfying the boundary conditions (2.3) 

(5.5) 
is given by iaq * g p  = - (A, sin(n+i)Ic(x+4)+A- sin(n- l )x(x+t)) ,  

2x 
where the definition 

A + = (i@) P+ a2 + (n & 1)2 x 2 )  [a2(Rin*') - R(")) 0 + i (d"  0 * l) -up)) 
x (1 + P )  ( a 2  + (n i ) 2  +)a+ (or)' - w p  *I)*) (a2 + (n & 1 )2 n2) P2 

-up* P( 1 + P )  (1 * 2n) xa1-1, 
has been used. 
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FIGURE 4. Rkn) as a function of P for n = 1,2. The outer curves show 10*R~n)/Rc for v* = 2800, 
the inner curves show Rin)/Rc for v* = 4-10". 

The solvability condition in the order e2 is obtained by multiplying the equation for 
$in) by $in)* and averaging it over the fluid layer. Here the asterisk is used to indicate 
the complex conjugate. The result yields a complex equation for w p )  and Bp) , ,  

iwin) [(a2 + n2n2)2 (1 + P) + iaq*P(P- 1) (P+ i)-l] - a2Rp) 

Figure 4 shows Ri*) as a function of P for n = 1,2 and two values of q*. The interesting 
feature of figure 4 is the opposite sign of l i p )  and Ri2). For a significant range of 
intermediate Prandtl numbers the negative value of Biz) indicates that the n = 2 
mode may replace the n = 1 mode as the critical disturbance for sufficiently high E .  

The numerical results obtained for finite E confirm this expectation. The values RF) 
for n > 2 exhibit a dependence on the Prandtl number similar to that of Rf) but the 
magnitudes of Rin) decrease with increasing n. Thus the mode n = 2 is the only mode 
capable of competing with the n = 1 mode at the critical Rayleigh number. The 
numerical results shown in figure 5 (a, b) correspond to a different function f(z), 

f(4 = 5, (5.8) 
which is more useful for applications of the theory. Numerical results have also been 
obtained for the function (5.2) but they differ little from those shown in figure 4 and 
have not been plotted for this reason. A t  the points where the n = 1 mode and n = 2 
mode do not only nearly agree with respect to the value R but with respect to the 
frequency w as well, a switch-over phenomenon occurs, as is evident in the case 
E = 0.75 in figure 5 (a, b). The solution of the n = 1 type becomes a solution of the 
n = 2 type and vice versa. This is possible because the two solutions are indis- 
tinguishable at the point where both satisfy the equation for identical values of the 
parameters. 

It must be expected that the highest amplitude of the preferred mode of convection 
occurs in the part of the annular region where the constraining effect of rotation is 
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FIQURE 5. (a) The Rayleigh numbers of the linear problem, Ri1) and It$*), aa a function of the 
wavenumber a in the case P = 1, q* = 2800. The four curves in each caae correspond to E = 0,0.5, 
0.75 and 1.0. The arrows indicate the direction of increasing E .  (b)  As (a) except that the driftrates 
dR) = -@)/a are plotted as a function of a. 

a 
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Y +  

FIQURE 6. Streamlines gcn) = const. for q* = 2800, e = 1, P = 0.7. The graph on the left side 
corresponds to n = 2, R = 34510, a = 6.8, c = 18.08; the graph on the right side corresponds to 
n = 1 ,  a = 8.7, R = 43660. The daahed lines give negative value of 

lowest, i.e. in the region of negative x when E is positive. This property is borne out 
by the eigenfunctions of the modes n = 1 and n = 2 for P 5 1.5 and P 2 20. In  the 
region where Rp) is negative the respective mode exhibits a maximum of Ie(n)I in 
the interval -; < x < 0, while the mode with positive Rin) exhibits a maximum 
amplitude in the outer part, x > 0, of the annular layer. However, in the intermediate 
range of Prandtl numbers, 1.5 5 P 6 20, the mode n = 2 has a maximum amplitude 
for x > 0, even though the negative value of R, indicates a physical preference, at 
least for larger values of E .  The exact boundaries of the interval 1.5 ;5 P 5 20 depend 
of course on q*. The lower boundary P = 1.5 corresponds to the asymptotic value 
in the limit q*+ m which was analysed by Busse & Hood (1982). 

A graph of the streamlines of modes n = 1,2 is shown in figure 6 for the Prandtl 
number P = 0.7. The graphs are based on computations with the function (5.8) and 
with E = 1. The streamline patterns show the opposite location of the maxima of 
the two modes and the characteristic slanted structure which is found in all 
computations for positive E. For negative E the streamlines will be slanted in the 
other way. 

6. Discussion 
The slanted form of the convection columns shown in figure 6 indicates a strong 

momentum transport towards the outside for E > 0. This effect has been studied 
theoretically and experimentally by Busse & Hood (1982). The numerical method 
described in $4 permits a more detailed investigation of the mean flow generation 
process. Since the subclass of solutions of the form (4.1) with vanishing coefficients 
for odd I + n no longer exists for finite E ,  the boundary conditions for the mean flow 
part of the solutions become important. In order to make' the nonlinear analysis 
comparable with the case E = 0 and with the analytical theory of Busse (1983a), 
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FIGURE 7. Comparison of solutions for a = 0 and a = 1 at two Prandtl numbers P = 1, P = 0.3, 
each. The mean flow properties are characterized by the coefficients d,, in the case a = 0 and dl0 
in the case E = 1. The phase velocity c = - w / a  increams with R-R, for E = 0 (upper curve) and 
decreases fore = 1 (lower curve). The value of a chosen in each cam is close to the respective critical 
value a,. Dmhed lines indicate solutions with NT = 4,0. The solid lines correspond to NT = 8. 

periodic boundary conditions have been imposed. These conditions require the 
replacement of the term dlo sinZx(z++) in (4.1) by 

&,(sin Zn(x + +) + (x2 -a) ZIC), (6.1) 
whenever Z is an odd integer. The mean flow obtained by this procedure is shown in 
figure 7. Since the coefficient dlo provides the dominant contribution, the other 
coefficients have not been plotted. Clearly, the asymmetric mean flow of the case E = 1 
is always much larger than the symmetric flow found in the case E = 0. Both cases, 
E = 0 and E = 1, show a similar saturation of the mean zonal flow which becomes 
noticeable for large values of R- R,. 

In  the computations of the finite amplitude solution for E = 1 the mode n = 2 of 
the linear analysis has been used as a starting point since this mode corresponds 
to the preferred solution for the Prandtl numbers P = 0.3 and P = 1. In  this respect 
the present analysis differs from the perturbation analysis of Busse & Hood (1982) 
where only the mode n = 1 was considered. Since the tilt of the linear solutions with 
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FIGURE 8. Streamline patterns of stationary convection flow aa seen from the drifting frame of 
reference. Solid (broken) lines indicate positive (negative) values of the streamfunction. Example 
(a) corresponds to E = 0, q* = 2200, P = 1, R = 5 x 106, a = 9.0; ( b )  corresponds to 6 = 0.5, 
T* = 2800, R = 1.2 x iV, a =*9.0, c = 10.3 In (a) the mean shear is cyclonic (anticyclonic) for 
x < 0 (5 > 0),  while in ( b )  the mean shear is cyclonic throughout the layer. 

respect to the z-axis is quite similar for both modes in the case E = 1, the mean zonal 
flow generated by the fluctuating convection columns does not differ much at finite 
amplitudes of the modes n = 1 and n = 2. The profile of the mean flow also does,not 
change much as a function of the Prandtl number while its amplitude varies with P 
as indicated in figure 7. The latter feature agrees qualitatively with the perturbation 
solution of Busse & Hood (1982). Thus the general conclusions of that paper remain 
valid although they are based on a more restricted analysis. 

In order to visualize solutions of the form (4.1), (6.1), it  is convenient to plot lines 
of constant $ with respect to the drifting frame of reference in which the solutions 
are steady and the lines of constant $ can be interpreted as streamlines. Since the 
velocity c in the negative y-direction must be added in the frame of reference drifting 
with the velocity c in the positive y-direction, the streamline graph does not show 
closed streamlines for weak amplitudes of convection. Only when the amplitude of 
convection and the mean flow generated by it become sufficiently strong, do closed 
streamlines appear as shown for example in figure 8. Figure 8 (a) reflects the symmetry 
of the problem with respect to the plane 2 = 0 in the case E = 0. Cyclonic and 
anticyclonic eddies are equally strong. Since the mean shear generated in the cme 
8 > 0 is predominantly cyclonic, only cyclonic close streamlines are visible in 
figure 8 (b). 

One of the main motivations for the present analysis has been the desire for a better 
understanding of the atmospheric dynamics of the major planets. While the mean 
zonal flows of Jupiter and Saturn can be interpreted quite well in terms of relatively 
simple models (Busse 1983a,b), the fluctuating motions appear to be much more 
complex. Although fairly regularly spaced eddies are seen in the Voyager pictures of 
Jupiter, the morphology of these motions varies strongly with latitude and exhibits 
little symmetry with respect to the equator. Most of the small-scale dynamic features, 
including the white ovals and the Red Spot, are probably confined to the upper stably 
stratified layer of the Jovian atmosphere. The most direct evidence for convection 
flow is likely to come from features connected with the deeper unstably stratified 
atmosphere. 

A peculiar feature which exhibits dynamic properties of the convection columns 
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discussed in this paper are the plumes observed at the northern edge of the equatorial 
zone of Jupiter (Mitchell et aZ. 1979). The heads of those plumes appear to drift in the 
prograde direction relative to the surrounding medium. The plumes thus extend in 
the westward or retrograde direction. This particular latitude is characterized by a 
strong cyclonic shear and may represent a particular annular convection layer which 
is coaxial with the rotation axis of the planet. 

While an amociation of the plume heads with cyclonic eddies has not yet been 
established, cyclonic eddies are seen at higher latitudes. For example, the dark spots 
called barges correspond to deeper layers of the atmosphere and thus could well be 
manifestations of convective activity in the Jovian interior. Obviously, the connection 
between the nonlinear solutions studied in this paper and the observations is 
tentative. But the investigation of the properties of the nonlinear thermal Rossby 
waves and of the secondary and tertiary solutions that bifurcate from them is likely 
to provide a basis for the improved understanding of the dynamical features observed 
on the major planets. 

The research reported in this paper has been supported by the Atmospheric 
Sciences Section of the U.S. National Science Foundation. 
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